VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (Civil Engg.) IV-Semester Main & Backlog Examinations, July-2023 Strength of Materials-II

Time: 3 hours

Max. Marks: 60

Note: Answer ALL questions in Part-A and cny FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q.No.	Stem of the question	M	L	CO	PC
1.	A cantilever beam of span 3 metres is subjected to a uniformly distributed load of 25kN/metre run over the entire span. Compute deflection at the free end.	2	2	1	1
2.	A simply supported beam of span 4m is subjected to a uniformly distributed load of 12kN/metre run over the entire span. Compute maximum deflection. EI is constant.	2	2	1	1
3.	A propped cantilever beam of span 3 metres is subjected to a point load of 20kN at a distance of 2m from the propped end. Compute prop reaction.	2	2	1	1
4.	State the fixed end moments of a fixed beam of span L subjected to a point load of W at the midspan.	2	1	1	1
5.	State Clayperon's theorem of three moments when spans have unequal flexural rigidity.	2	1	1	1
6.	State the significance of shear centre.	2	ж <u>е</u> 1	2	1
7.	Explain what is meant by strength of a shaft.	2	2	1	1
8.	A close coiled helical spring of mean radius 200mm and of wire diameter 16mm has 20 turns. Compute its deflection when subjected to an axial load of 100N. Adopt C=0.8×10 ⁵ N/mm ² .	2	2	4	1
9.	Define and explain modulus of resilience.	2	1		
10.	State the Rankine's formula for columns.	2	1	4	1
	Part-B $(5 \times 8 = 40 Marks)$	al date	1	5	1
1. a)	Derive the expressions for the slope and deflection at the free end of a cantilever beam of span L subjected to a point load P at the free end. EI is constant.	4	3	1	1
b) 1	Analyze the simply supported beam shown in the figure and compute slopes and deflections at typical points. EI is constant.	4	4	1	2
	80 kN				
	10 kN/m				

2. a)	Analyse the propped cantilever beam shown in the figure and compute slopes and deflections at typical points. El is constant.	1	4	1		2
1	80 kN					
	3m - B 3m - A					
b)	A fixed beam of span L is subjected to a uniformly distributed load of w per metre run. Draw the shear force and bending moment diagrams for the beam.	4	4	2 2	1	2
(3. a)	Derive the Clayperon's theorem of three moments for the analysis of continuous beams.	4	3		1	1
b)	A two-span continuous beam ABC is supported by hinge at A and rollers at B and C. The span AB of length 4m is subjected to a uniformly distributed load of 25 kN/m over the entire span while the span BC of length 5m is subjected to a point load of 60kN acting at a distance of 1m from C. Draw the SFD and BMD for the beam.	4	4			2
14. a)	Compute the diameter of a solid shaft which will transmit 500 kW at 120 rpm. The maximum shear stress should not exceed 30 N/mm ² and twist shall not be more than 1 ^o in a shaft length of 2 m. Take modulus of rigidity	4	2		4	1
b)	diameter wire and has 16 turns. Spring carries an axial load of 150 turns. of rigidity is C=0.8×10 ⁵ N/mm ² . Compute the deflection of the spring.	4	2		4	1
15. a)	A prismatic bar of length L and cross-sectional area A is attached to a collar at its lower end. A weight of P falls on the collar suddenly through a height of h. The Young's modulus of the material of the bar is E. Derive an expression for the strain energy stored in the bar.	4	3		4	2
1.	Derive the formula for Euler's buckling load of a column with both ends fixed.	4	3	}	5	2
16. a)	Derive the expressions for the end slopes and midspan deflection of a simply supported beam of span L subjected to a point load P at the midspan. EI is	4		3	1	2
b	Draw the bending moment diagram for a fixed beam of span 4 metres subjected to a point load of 25kN at a distance of 2 metres from the left end.	4	95.	4	1	2
17.	A server any two of the following:	A		4	1	2
100	Answer any two of the following Answer any two of the following Support at A and roller supports at B and C. A continuous beam has a fixed support at A and roller supports at B and C. Length of span AB is 4 metres and is subjected to a point load of 50kN at midspan while length of span BC is 3 metres and is subjected to a uniformly distributed load of 12kN per metre run. Draw the bending moment diagram for				1	
1	the beam. Derive the governing equation of torsion of circular shafts $\frac{T}{J} = \frac{fs}{R} = \frac{C\theta}{L}$	4		4	3	2
	State and explain the importance of Rankine's formula for columns.	4	+	1	5	2

	Blooms Taxonomy Level – 1	20%
<u>i)</u>	Blooms Taxonomy Level 2	30%
ii)	Blooms Taxonomy Level – 2	50%
iii)	Blooms Taxonomy Level – 3 & 4	3070